Solution There is no derivative at the origin because the right-hand and left-hand derivatives are different there. The slope at x = 0 of the parabola on the left (Fig. 3.11) is m = 2(0) = 0 (from Example 3). The slope at x = 0 of the line on the right is 2.

Examples 6 and 7 are examples of continuous functions that are not differentiable, counterexamples to the converse of Theorem 1.

Exercises 3.1

In Exercises 1-4, estimate the slope of the curve (in y-units per x-unit) at the point with the indicated x-coordinate. Be careful: x-scale and y-scale may not equal 1 in the viewing window shown.

1. a)
$$x = 2$$

b)
$$x = 4$$

2. a)
$$x = -1$$
 b) $x = 0$

[-5, 5] by [-5, 5]

3. a)
$$x = 0.5$$

b)
$$x = 4$$

4 a)
$$x = -1$$

b)
$$x = 1$$

[-10, 10] by [-1, 2]

5. The viewing window below shows the Fahrenheit temperature in Fairbanks, Alaska, for a typical 365-day period from January 1 to December 31. Answer the following questions by estimating slopes on the graph in degrees per day. For the purpose of estimation, assume that each month has 30 days.

- a) On about what date is the temperature increasing at the fastest rate? What is the rate?
- b) Do there appear to be days on which the temperature's rate of change is zero? If so, which ones?
- c) During what period is the temperature's rate of change positive? Negative?

6. The viewing window below shows the number of hours of daylight in Fairbanks, Alaska, on each day for a typical 365-day period from January 1 to December 31. Answer the following questions by estimating slopes on the graph in hours per day. For the purpose of estimation, assume that each month has 30 days.

- (a) On about what date is the amount of daylight increasing at the fastest rate? What is that rate?
- b) Do there appear to be days on which the rate of change in the amount of daylight is zero? If so, which ones?
- c) On what dates is the rate of change in the number of daylight hours positive? Negative?

In Exercises 7–20, use Eq. (1) to find the derivative dy/dx =f'(x) of the function y = f(x). Then find the slope of the curve y = f(x) at x = 3, and write an equation for the tangent line there.

7.
$$y = 2x^2 - 5$$

8.
$$y = x^2 - 6x$$

9.
$$y = 2x^2 - 3$$

9. $y = 2x^2 - 13x + 5$

10.
$$y = -3x^2 + 4x$$

11.
$$y = \frac{2}{r}$$

12.
$$y = \frac{1}{x+1}$$

13.
$$y = \frac{x}{x+1}$$

14.
$$y = \frac{1}{2x+1}$$

15.
$$y = x + \frac{9}{x}$$

16.
$$y = x - \frac{1}{x}$$

17.
$$y = 1 + \sqrt{x}$$

18.
$$y = \sqrt{x+1}$$

19.
$$y = \sqrt{2x}$$

20.
$$y = \sqrt{2x+3}$$

In Exercises 21-24, find an equation for the tangent line to the curve at the given point. Then GRAPH the curve and tangent in the same viewing window.

21.
$$y = 4 - x^2$$
, $(-1, 3)$

22.
$$y = (x - 1)^2 + 1$$
, (1, 1)

23.
$$y = \sqrt{x}$$
, (1, 1)

23.
$$y = \sqrt{x}$$
, (1, 1) **24.** $y = \frac{1}{x^2}$, (-1, 1)

In Exercises 25-30, use the alternate derivative formula

$$f'(c) = \lim_{x \to c} \frac{f(x) - f(c)}{x - c}$$

from the proof of Theorem 1 to find the derivative of f at the given value of c.

25.
$$f(x) = x^2 - x + 1$$
, $c = 1/2$

26.
$$f(x) = -3x^2 + 7x + 5$$
, $c = 2$

27.
$$f(x) = \frac{1}{x+2}$$
, $c = -1$

28.
$$f(x) = \frac{1}{(x-1)^2}$$
, $c=2$

29.
$$f(x) = \frac{1}{\sqrt{x}}$$
, $c = 4$

30.
$$f(x) = \frac{1}{\sqrt{2x+13}}$$
, $c = -2$

Compare the right-hand and left-hand derivatives to show that the functions in Exercises 31-34 are not differentiable at the indicated point P. Support your findings graphically.

31.
$$f(x) = \begin{cases} x^2, & x < 0 \\ x, & x \ge 0 \end{cases}$$
 $P = (0, 0)$

32.
$$f(x) = \begin{cases} 2, & x < 1 \\ 2x, & x \ge 1 \end{cases}$$
 $P = (1, 2)$

33.
$$f(x) = \begin{cases} \sqrt{x}, & x \le 1 \\ 2x - 1, & x > 1 \end{cases} \quad P = (1, 1)$$

34.
$$f(x) = \begin{cases} x, & x \le 1 \\ \frac{1}{x}, & x > 1 \end{cases}$$
 $P = (1, 1)$

In Exercises 35-38, do the following:

- a) Find the derivative f'(x) of the given function f(x).
- b) GRAPH $y_1 = f(x)$, and $y_2 = f'(x)$ in the same viewing window.

Then answer these questions:

- c) For what values of x, if any, is f'(x) positive? Zero? Nega-
- d) Over what intervals of x-values, if any, does the function f(x) increase as x increases? Decrease as x increases? How is this connected with what you found in part (c)? (We say more about this connection in Chapter 4.)

35.
$$y = -x^2$$

36.
$$y = -\frac{1}{x}$$

37.
$$y = \frac{x^3}{3}$$

38.
$$y = \frac{x^4}{4}$$